
Understanding Programming: 
How to See the Unseen with C++ 
By Chad Jordan – May 12th, 2006 



1 

In this guide, you will learn: 
1) Theoretical concepts behind the what, how, and why of computer programming
2) The hierarchical programming construct and systematic problem-solving
3) Visualizing methodologies, processes, and communication between data
4) Conditional statements, logical expressions, and selection control structures
5) Functions, data abstraction, classes, arrays, and recursion with C++

 
 
In the 21st century, programming has remained an intimidating concept to many people.  The 
reality is if you enjoy puzzles, are willing to work hard, you’re patient, apply systematic 
problem-solving, and add a little creativity, programming can actually be really fun!  As a puzzle 
enthusiast and computer science new media major, I can attest to the challenges that 
programming has presented to me.  Full disclosure to inquiring minds, programming is hard!  If 
it was easy, everyone would be doing it to get paid higher salaries.  My professors used to say, 
“Programming is the ability to see the unseen.”  My hope is that this guide will help you see a 
glimpse into the universe of 1’s and 0’s.  Computers only understand very specific rules and 
instructions in order to carry out the desired tasks from the developer/engineer.  It’s true that 
computers are incredible machines, capable of remarkable things, but engineers have to go 
through rigorous steps of communicating with the computer in order to successfully build and 
execute a program.  For years society has believed that computers are these advanced 
machines intelligent enough to steal all of our jobs.  The truth is, on their own computers are 
actually quite dumb.  They have to be told every little detail in a very sequential, and many 
times tedious manner in order to properly compile information and run programs.  They only 
perform and carry out the tasks that they do because we tell them how to do it.  In hindsight, 
engineers are what bring the computer to life.  The drawback of computer science is even if 
your code successfully compiles and runs, applications can still become unstable and crash 
without regard to reason.  I’ve literally spent hours with the best professors debugging program 
errors only to finally throw our hands up in defeat and then I had to start programming all over 
again using a different approach.  In mathematics, you are presented with a problem, and there 
is only one path to get the solution, but in computer science, the path veers off into numerous 
other possible directions in order to reach the successful execution of the compiler. 
Just as in behavioral science with psychology we understand the human mind is one of the 
most complicated areas of study, computer science is the psychology of a computer and how it 
thinks, behaves, and allows us to communicate with it.  My goal in this guide is to provide visual 
insight into learning how the psychology of the computer works and thus, how to write basic 
computer programs in C++.  To do this, I will be providing code examples from computer 
programs that I’ve written using the free Dev C++ compiler in a Windows environment.  This 
guide will be written with the understanding that the reader has had little to no experience in 
programming.  I will be using an array of visual approaches to help teach some of the basic 
concepts and processes needed to start writing your own programs by the time you are done 
reading the guide.  While my hope is that you will learn how to program using this guide, it’s 
important to realize that I will by no means be covering everything you need to know to be a 
top programmer, in fact not even close.  I’m covering what I believe are the essential topics to 
help you understand how it works so you can at least begin the journey.  With that, let’s begin! 

Introduction 



2 

We start by looking at the computer.  What is a computer, and what can we do with it?  A lot of 
people use their computers in an office setting where they process Word documents, Excel 
sheets, or make PowerPoint presentations.  Other people that work in financial businesses such 
as a bank or the stock market will use computers to run a series of calculations to roll out 
numerical results.  No matter what you do, there is always a request (initialization) performed 
by the user, the computer takes the request to process it, and completes the requested task. 

As the computer processes information and tasks, it’s important to understand how these 
processes work.  Speaking of how things work, there are a couple of facts to note for 
newcomers that are curious about this field:   

1) You do not have to know much about computers to be a programmer, but it helps.
2) You do not have to be good at mathematics to be a programmer, but it helps.

Speaking for myself regarding these two statements, I have worked with numerous computers 
for several years now, so I’ve had time to learn about objects and data within different systems. 
However, I consider myself very average when it comes to mathematics.  I’ve known multiple 
programmers who work full-time in the field, and math has never been their strong suit, nor 
something that they’ve enjoyed.  What you really need is the ability to think systematically 
using problem-solving and logic.  This is the biggest thing that will help you be a successful 
programmer.  As I mentioned, I’ve worked with computers and researching systems for several 
years now, so let’s take a look at how the computer will process this information.   

At the starting point, we look at the input device.  When we use keyboards to give instructions 
and commands such as code, this is the stage of the input.  Next, it gets compiled through the 
CPU which takes the information and converts it to binary data.  The CPU has two extra 
components, known as the control unit, and the logic unit.  The control unit ensures the other 
data components are executed in proper sequential order.  The logic unit performs the 

What is a Computer? 



3 

arithmetic operations such as addition, subtraction, multiplication, and division.  This also 
includes logic expressions on operands and variables.  The memory unit assists the control and 
logic units in handling informational tasks.  Once everything has been properly read by the 
compiler and passed through the CPU for conversion, it is then passed to the output device, 
also known as the video display/monitor.  There’s obviously a lot more involved with a 
computer than these simple procedures, but the above I/O diagram is the most important part 
when comprehending our statically-typed compiling (console-based) system for programming. 
 
 
As the user, you have various programming languages (technologies) at your disposal.  Each of 
these technologies brings a vastly different learning curve of theoretical concepts, 
methodologies, procedures, and executions.  No matter what kind of application you are trying 
to create, the purpose of programming is to create the perfect system.  The programmer must 
thoroughly consider what kind of program they want to create, algorithmic procedures of what 
the application will require, ensure the implementation is clear with solid data flow, and above 
all else, how it needs to function for the end-user.  A lot of people don’t stop to think about 
how long we’ve had assistance from computers all around us.  Without computers, there would 
be no day-to-day traffic direction, no air traffic control systems, no working machines in 
hospitals, no robotics of any kind, no electronic banking systems, and no modern telephones or 
cell phones would exist.  However, even with all of these things being dependent on computers, 
without programming, computers would literally do nothing.  Computer programming is the 
cornerstone of nearly all functional machines and electronics in the world. 

In programming, there are different areas that focus specifically more on computers, then there 
are areas that focus more on machines, and programming languages for the web.  Within these 
realms of technology exist what are known as high-level programming languages, and low-level 
programming languages.  High-level languages are more programmer (user)-oriented, easier to 
understand, easier to debug, cross-platform, and more widely used.  Low-level languages are 
more machine-oriented, harder to understand, more difficult to debug, maintenance is more 
complex, and requires an assembler to translate instructions.  From this, we understand that 
different languages have different strengths for different platforms.  The most common high-
level languages in computer programming are C++, C#, Java, and Python.  Then under the web, 
we have programming languages like Javascript, Ruby, PHP, Perl, and SQL mostly focusing on 
the back-end.  Then we have the front-end, which primarily is coding for markup & styling such 
as HTML, XML, SGML, and CSS.  We also have what is referred to as functional programming 
when dealing with focuses like artificial intelligence, machine learning, language processing, 
modeling vision, and speech.  For those, we turn to languages like Haskell, Elixir, ML, and Lisp.  
For low-level programming, we’ve seen COBOL, Fortran, Machine Language, and Assembly 
(8008, 8086, i386, i586, i686, Mano, x86_64 architectures).  The ocean of programming 
languages with their meanings and purposes is vast and deep.  The question is, what does it 
take to get to a place of understanding these technologies and how to implement them?  This 
question goes back to my statement made in the introduction about applying systematic 
problem-solving.  Well, let’s take a look at what you have to understand when moving forward 
in this field.  Every line of code or command that you place, means something important.   

What is Programming? 



 4 

E.g. I want to write a happy greeting to my computer like, “Good morning computer!  Isn’t it a 
wonderful day?”  Or, maybe I want to input a simple math problem like 3 x 4 and get the 
response, so I explain to the computer how to understand basic arithmetic operations.  
Everything in information systems has an input and an output no matter what kind of form is 
being used.  To read this input and output, computers read things just as humans do, from top 
to bottom, and left to right.  We always understand this simple step-by-step procedure, and so 
does the machine.  It just happens to read it in an artificial language that it understands.  Just as 
humans understand natural languages like English, Spanish, French, German, Russian, Japanese, 
etc. computers understand artificial languages like C, C++, C#, Java, Python, Assembly, etc. so 
we just have to learn these languages so that we can properly communicate with the computer.  
As humans within our own languages, we understand nouns, pronouns, adverbs, adjectives, 
and prepositions.  When it comes to computers, they understand data types, variables, 
operands, conditionals, and classes.  There are rules when following proper grammar when we 
write out everyday sentences to people in emails or other letters, and the same thing applies to 
artificial languages.  There are rules of how things have to be presented to the computer in a 
sequential manner so that it understands what you’re wanting to do.  This base level of 
understanding communication between humans, when compared to communication between 
data, has really been a method that has helped me, and if you think of it in this manner, it’s 
obviously different, but in many ways, it’s also very similar.   
 
I mentioned input and output earlier, along with conditionals.  This is very important for us to 
grasp when looking at the programming thought process.  Think about the process of real-
world tasks like the process of filling up a bathtub with water.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Everything around us is based on conditions.  We perform the actions until we are pleased with 
the results.  We perform the same actions in programming.  If this, >= then this other thing, do 
this, otherwise, do that.  If this is not found, keep searching for the thing until it’s found.  Yes, 
those are rather vague concepts, but they are the basis of sequential thinking in the computer 
science process.  Everything tends to branch out in a hierarchical manner when met with the 



 5 

conditional thought process.  When thinking about conditional statements with input and 
output, we know that the computer waits for a button to be pressed.  The same is done in our 
code.  We can write a condition that checks for a specific button to be pressed, and if it’s 
pressed, another part of the program is executed.  If not, then the program continues exactly as 
specified until another condition is met.  It should be thoroughly understood that while 
computer science is very objective (right or wrong), it is not as black and white as people may 
think.  There are plenty of complexities (gray areas) that must be taken into consideration for 
good programming to be properly executed.  Instructions must be given so the computer can 
carry out the tasks, and these instructions come in the form of writing functions, conditional 
loops, and other commands so that the request is put in, the computer processes the request, 
and then the request is completed.  Based on this knowledge, we know there is a sequence and 
structure to programming.  Another programming concept that my professors told me in the 
beginning, the key to understanding programming is: 

1) Sequence 
2) Selection 
3) Repetition 

You may be thinking, that those steps seem very vague, and people need more than Sequence, 
Selection, and Repetition in order to write computer programs.  These steps are obviously a 
part of a much larger picture, it’s more about allowing yourself to begin the mental process of 
understanding the structured sequence of programming.  With these basic principles in mind, 
let’s unfold the bigger picture and look at the hierarchical programming construct. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In computer programming, a value is a sequence of bits that is interpreted according to the 
data type that has inherited it such as integers, floating points, or strings.  A variable is an 
identifier that is connected to a value and saved in system memory as an expression to be 
executed later.  An operator is similar to what is used in mathematics such as +, -, *, / or = and 

A list of instructions formatted in 
human-readable source code that 
allows the programmer to study 
and formulate an approach based 
on what the program will need. Allocation of code with a larger 

program that implements a 
categorical task multiple times 
during an individual execution of 
the program. A standalone element in an 

imperative programming 
language.  The implementation of 
code includes a sequence of 
statements throughout the build 
process. 

An expression takes the values, 
variables, operators, and functions 
that are interpreted according to 
specific rules of precedence. 



 6 

is typically a fixed number of built-in operators.  This form of sequential thinking gives rise to 
the systematic thought process.  When we use problem-solving, we assess the situation using a 
sequential thought process of executions to address each task until the problem or current 
stage of the problem is solved.  Systematic problem-solving isn’t much different. 

• Recognize that a problem exists 
• Analyze the problem 
• Identify possible causes/solutions to the problem 
• Evaluate the possible causes/solutions 
• Develop an action to correct the problem 
• Verify that the problem has been resolved 

 
It is this mentality and process that you need to repeatedly focus your efforts on.  Allow your 
mind to open up to these procedures and adapt your way of thinking to them.  Programming 
aside, if more people applied these types of steps to their daily lives, we would have a lot more 
functional minds having the desire to work together.  Now that you understand more about 
what programming is, the next question is understanding the how and the why behind 
programming with the types of styles (paradigms) of programming languages. 
 
 
We all understand that computers perform a vast number of tasks for us, but how many have 
stopped to think about how we can truly communicate with them?  In a way, we communicate 
with them by putting in simple day-to-day requests such as running software applications.  
Likewise, when it comes to programming, the principles of what we’re following are very similar 
to my above example with initializing a Microsoft word application.  The user puts in a request, 
the request gets processed, and if all goes well, we have a successful compilation/execution of 
our program.  So how do we do this?  How can we begin to visualize the steps involved with 
writing our own computer programs, and lastly, which style of programming best fits your 
thought process?   
 
We know that programming has 
different styles or paradigms.  It is 
never a single, static approach, 
but can be executed using 
multiple styles and 
methodologies.  More to this 
topic, we have different 
paradigms to consider such as 
imperative which includes 
procedural, and object-oriented 
programming.  These two styles of 
programming are by far the most 
popular in computer science.  Imperative consists of an array of instructions that are given to 
the computer to be executed in sequential order.  Another paradigm is declarative which 

Programming Paradigms 



 7 

includes functional, and logical programming.  This style is less about providing instructions 
about how the computer should execute a task and more about what kind of result is required.  
This is one of the reasons why it’s helpful to know a little about how computers work.  The 
more you understand the processes of how data works and is executed, the better equipped 
you can be to decide which programming language you should choose for a given task or 
project.  I will further address the topic of programming languages and their purposes shortly.  
Paradigms help to reduce complexity in programming.  Although, they should never be 
confused with Languages!  A paradigm is a style, a technique, an ideal method, intended to be 
implemented, it is not a programming language. 
 
 
In order for our programs to properly compile, the compiler has to understand the protocols in 
order to process the code that is being fed to it.  To allow this we provide reference points (also 
referred to as libraries) at the beginning of our programs to provide the compiler with large lists 
of information and data so that it understands how to process our requests.  Two of the C 
libraries that nearly every program requires in order to successfully run are called iostream and 
cstdlib. we define them as #include <iostream>, and #include <cstdlib>.  IOstream essentially 
provides functionality to use an abstraction called streams designed to perform input and 
output operations.  Cstdlib is a C-standard library that defines several general purpose 
functions, including dynamic memory management, random number generation, 
communication with the environment, integer arithmetics, searching, sorting and converting.  
We include all various types of libraries in our programs, it just depends on what kind of 
programs we’re writing.  Take for example if we’re wanting to generate an output file at 
runtime, we would use #include <ofstream>, and if we want to input information from an 
external file, we would use #include <ifstream>.  File streaming processes and other data 
abstraction methods in programming are largely used in object-oriented programming.  
Another instance of input and output but with more details regarding data manipulation is the 
<iomanip> library.  IOmanip is a list of helper functions to control the format of input and 
output.  Similar to the logic unit of a CPU, the compiler understands basic arithmetic such as 
addition, subtraction, multiplication, and division.  However, when it comes to more advanced 
numerical operations in C languages, we include the <cmath> numeric library.  This library can 
assist us in retrieving square root results, decimal values, calculating logarithmic equations, 
sin/cos formulas in trigonometry, and a lot 
more.  Even with the vast list of system 
libraries at our disposal, what happens 
when we want to write, customize, and 
reference our own library files?  We can do 
exactly that!  These are called header files 
so rather than ending with the file 
extension, .cpp for a C++ file, they will end with a .h for header file instead.  It’s important to 
note that we call these two types of library files using two different methods.  One is using 
angle brackets < >, as I’ve demonstrated above and to the right in this screenshot.   
This means we are referencing pre-existing system libraries.  The other method is with quotes:  
#include “header.h“ and this tells the compiler that the file we are wanting to include is in a 

Learning About Libraries 



 8 

local directory/location.  If my header file is located in another subdirectory away from my .cpp 
file, I would simply define it with the name of the created directory in front of the header name.  
E.g. #include “some_directory/header.h”  In the earlier stages of programming, you’re not in a 
place yet where you need to be concerned with creating multiple directories for handling input 
and output of data files.  In the learning stages of programming, you can leave everything in 
one directory.  C++ has extended libraries access, particularly, the popular Standard Template 
Library (STL). It helps to deploy data structures and many essential functions such as lists, 
stacks, vectors, and arrays in code to write it faster.  For example, different containers are 
included, such as tables, queues, stacks, maps, and sets. 
 
 
Just like libraries, variables are used in every program you write.  However, unlike libraries, we 
don’t simply declare them once and then not reference them again.  Variables are created and 
used in every aspect throughout your programs.  We create them, we set values to them, and 
we reference them in our functions.  So, let’s visualize how we create and use variables.  In C++, 
variables are containers that store data values such as ints (integers), chars (characters), floats 
(floating-point numbers), bools (booleans), and strings.  In my home, I have containers that I 
use to store my computer components and peripherals.  I always organize them by type so I use 
an electronic label maker to label the various containers with the type of hardware that 
corresponds to the label.   
 
 
 
 
 
 
 
As such, we do the same thing virtually when writing our programs.  Variables are just 
containers for storing data values.  Understanding variables and how we store them is no 
different from applying basic arithmetic methods (E.g. x = 2 therefore, 4 + x = 6).  When we set 
2 to x we are labeling the variable x with a value or amount of however many we wish when it 
comes to building our program the way we want.  When we do this, we can organize any 
specific number of objects or lists that we wish to sort and print.  The following diagram is a 
slightly altered, but similar way of looking at how we can set variables, calculate them, and the 
result is processed and then printed out to the screen.   

Just these examples alone with the simplest form of arithmetic can help to paint a picture on a 
canvas for a clearer understanding of how we declare and use our data with variable values. 

Visualizing Variables 



 9 

Now for the real fun!  We look at how the code is written and the meanings behind the various 
symbols, characters, and data types.  We know that the human mind is a neural-network 
comprised of a vast system of impulses that are all running on a fast-paced, interconnected 
highway of signals.  Computer programming is the artificial version of the human mind, 
especially when writing larger-scale programs with thousands of lines of code.  C++ is one of the 
most commonly used, and fastest compiling languages for software development in the 
industry, but that doesn’t mean it’s the only option.  Python is an interpretive programming 
language, not nearly as fast, but more versatile overall when it comes to programming 
environments, multi-purpose, and multi-platform applications.      
 
What is syntax?  Syntax is a particular way that you need to write and structure your code in a 
language so that the computer can read and execute it.  Semantics are the how and the why 
behind the symbols, characters, and words in the code.  Let’s look at a simple ‘Hello World’ 
program between the syntax of C++ and Python. 
 

C++:                                                       Python: 
 
 
 
 
 
 
 
 
Output: Hello World!                                                         Output: Hello World! 
 
The difference in the syntax is pretty apparent.  Writing simple output code in Python is 
exponentially easier and faster to write than in C++.  However, when it comes down to 
processing speed, C++ is much faster than Python.  One of the biggest reasons for this is that 
C++ is a compiling language, whereas Python is an interpreted language.  Interpreting going line 
by line through a program and immediately converting it to machine instructions.  Much like an 
interpreter that listens and translates one incoming language to another, the programming 
language will take one command at a time and translate it to machine instructions and let it 
run.  On the other hand, a compiler reads in the entire program all at once to determine what 
commands should be.  The most important thing to remember no matter what language you 
use is that we are taking the code and converting it to machine commands.   
 
Let’s talk about the semantics of what’s going on in this simple program.  As we’ve already seen 
with Python, there isn’t much of anything going on code-wise except using a print function to 
pass a string of, Hello World!  In comparison to C++, the syntax is obviously not as 
straightforward.  As we’ve learned earlier from the library section of this guide, we begin all of 
our programs by declaring the proper (and standard) libraries at the top. 
 

Syntax and Semantics of Code 

print (“Hello World!”) #include <iostream>                                 
using namespace std; 
 
int main()  
{ 
     cout << “Hello World!” << endl; 
 
     return 0; 
} 

 



 10 

On the next line we type, using namespace std; because 
when we run a program to print output, ‘using 
namespace std’ is saying if you find something that is 

not declared in the current scope go to this location and 
check std (standard characters and names) such as cout, cin, and endl.  The semicolon that 
follows is simply an indicator that lets the compiler know that it’s reached the end of the 
command, separating the command from the rest of the respective code.  The semicolon like 
any other symbol in code is always required in order for the program to properly run.   
 
Starting on the next line we write the main function because we need to return an integer 
before closing out of the program.  When we declare a function, the format is:  
data type, name of function, followed by a set of parentheses ().  The parentheses behave like 

an expression similar to mathematics: (a + b) * c  
and declares an argument and passes it in a function declaration.  
We don’t always have to pass a parameter to the function, and in 
this instance, we simply declare it empty as two sets of ().  In 
programming, the order of parentheses and brackets is executed 

as (), {}, and [].  As an example, if we execute a string, a valid string would be: “() [ () { () } ]” and 
an invalid string would be “{ [ } ]”.  In more intermediate levels of programming, we use what 
are called stacks to traverse through the expression until it has been exhausted, and I will 
provide more code examples of how this is done later.  I’ve provided this example of the order 
of parentheses because this is exactly the next step we perform in our simple output program.    
The opening and closing of the curly brackets specify that everything inside of the brackets such 
as commands, conditional statements, nested functions, strings, etc. remain between these 
two brackets.  This means that the placement of the top curly bracket does not technically have 
to remain below the function, but can be declared either way: 

                                                                                
 

 
 
 

 
 

(Better for readability)              (Saves on black space) 
 
Our next step involves putting in the appropriate output command inside of the curly brackets 

for our main function.  The cout command is 
a C-language output command that is 
outputting a command from the keyboard.  

In the case of our Hello World! 
program, we are wanting to output a 
message (string) to the screen.  To do 

this properly for readability in our code, we 
always indent our command inside of the curly brackets when they are called.  After typing 

#include <iostream>                                 
using namespace std; 
 
 

#include <iostream>                                 
using namespace std; 

 
int main() 

#include <iostream>                                 
using namespace std; 
 
int main()  
{ 
 
} 

#include <iostream>                                 
using namespace 
std; 
 
int main() { 
 
} 
 

#include <iostream>                                 
using namespace std; 
 
int main()  
{ 
     cout << “Hello World!” << endl;  
} 



 11 

cout, the output command requires two << (left-angle brackets or left shift operator) which 
means ‘put to’ then we type two “ ” quotes because the quotes indicate to the compiler what 
we are wanting to pass to our output string.  Put bluntly, or more in English, we are placing the 
text inside of the quotes which represent our message.  Afterward, we type two more left-angle 
brackets followed by endl; in order to ‘put-to’ the end of the line endl and our semicolon to 
indicate the end of the command.  As you progress through programming, you will eventually 
run into the cin command.  Just as there is a cout command for output, there is a cin command 
for coding input operations.  Using the >> (right shift operator) we can ‘get-from’ file data. 
 
We’re nearly done going over the semantics of a simple Hello World! program, but there’s still 
one more instance that we need to cover.  As I mentioned earlier, we have a function 
declaration (int main), and being an int datatype this requires returning an integer value before 
the program is completed.  Since this integer is part of our main function, we expand the 
closing } curly bracket to allow space for one more command.  We know that we have 
everything else in place when it comes to accounting for the output of a simple Hello World! 
message to the screen. 

Our int function must return a value of either 
1, or 0, (True, or False).  This means if we 
return a value of true (1), then the program 
has not been executed successfully, and if we 
return false (0), the program has been 
executed successfully and therefore 
completed the intended request of the user.   
 
 

When compiling and running the code, the user gets the following text in a console window: 

 
The source code that I demonstrated above is one of the common methods to write the 
infamous Hello World! program.  However, as I mentioned at the beginning of this guide, 
programming can be approached and written in multiple ways.  Here are some more methods 
for writing a Hello World! program in C++ that will give us the exact same output:  

#include <iostream>                                 
using namespace std; 

 
int main()  
{ 
     cout << “Hello World!” << endl; 

 
     return 0; 
} 

 

#include <iostream>    
 
int main() { 
     puts(“Hello World!”); 
 
     return false; 
} 

#include <iostream>    
 
int main() { 
     std::cout << “Hello 
World!”; 
      
     return EXIT_SUCCESS; 
} 
 

#include <cstdlib> 
#include <stdio.h>    
 
int main(void) { 
     printf (“Hello 
World!”); 
} 
 



12 

There are still many other ways to write it, but it’s important to keep your code clean, and not 
go overboard.  These three additional examples happen to be simple, and syntactically clean.  
As far as writing a program in C++, what you see here is as easy as it gets.  If you would like to 
try writing your own Hello World! program, here are the steps to setting up Dev C++ on your 
Windows PC. 
 

Begin by downloading and installing Dev C++ on your computer by clicking the following link.  
Once downloaded, simply run the EXE file and go through the prompts confirming, agreeing, 
and hitting Next leaving everything as default throughout the process, click Install.  This first 
part is so quick there’s no need to provide screenshots.  When you get to the end, uncheck Run 
Dev C++  4.9.9.2 because we have some quick configurations to set up first. 
 
 

 

 
 
 
 

Configuration Step 1:  Once you reach the first 
time configuration part of the installation, I 
clicked the No radio button because I don’t care 
for the auto-complete and other unnecessary 
features.  This is up to you.  Then, hit Next. 
 

Configuration Step 2:  On the next dialog box 
click the YES radio button to create cache now. 
Then, hit Next. 

Configuration Step 3:  After it’s done parsing 
the files, you can complete any other clicks to 
get through the configuration, open the 
program, and click File > New > Project. 
 

Configuration Step 4:  Now we set up our 
Project as a Console Application, ensure it’s 
a C++ Project, give it a name, and click Ok. 
 

Installing Dev C++ on Windows 

https://sourceforge.net/projects/dev-cpp/files/Binaries/Dev-C%2B%2B 4.9.9.2/devcpp-4.9.9.2_setup.exe/download


 13 

 
 
 

 
 
 

 
 

The result is a successfully compiled and ran  
Hello World! program.  

Now that you have at least one compiler installed on 
your computer, a general understanding of how to use 
Dev C++, and the basics of printing out a simple Hello 
World! message, let’s kick it up a notch with 
formatting simple lists of strings.   
 

We’ve printed out a single line, but what about printing out a new line on multiple lines?  This 
can be accomplished by putting in another cout statement.   

 
 
 
 
 
 
  
 
 
 

We can also enter line breaks in the strings which is another way to create a new line for our 
statements.  This saves on space by including our next string in our original cout statement 
simply by adding another << (left shift operator) to give us the exact same output. 

  
 
 
 
 
 
 
 
 

Ensure that your source code is set up to 
output Hello World! to the screen. 
 

This button compiles and runs the code, 
and as you can see, you can also use F9 
as a keyboard shortcut. 
 



14 

While we can print out some simple phrases using hardcoded methods like cout, we can also 
use the <string> library to allow us the ability to work with string data types.  String data types 
are used to store sequences of characters to print out sets of phrases and form them into 
sentences.  This is also referred to as string concatenation. 

Programming offers infinitely more than just printing out silly messages to a console 
application.  We can start by doing some basic arithmetic operations very similar to the 
examples I provided on page 8 of my ‘Visualizing Variables’ section.  

This is the correct output given the 
arithmetic operation:  
5 + 7 + 8 / 3 

In this program, I declare three integer 
variables, assign three random values of 
5, 7, and 8 to the variables, declare a 
float variable to hold the sum of the 
three values, calculate the average of the 
three integers, assign that value to the 
float variable, and output the float 
variable contents to the screen. 



15 

When we understand the order in which statements are executed in a program, we call this the 
flow of control.  As such, the computer is under control of one statement at a time.  When a 
statement is executed, the control is turned over to the next statement (much like a baton 
being passed in a relay race).   

In programming languages, assertions take the form of logical expressions also referred to as 
Boolean expressions.  Just as an arithmetic expression is made up of numeric values and 
operations, a logical expression is made up of logical values and operations.  

When considering the flow of control, we realize any given function is implemented with three 
basic types of control 
structures: 

Sequential – execution of code 
statements from top to 
bottom (one line after 
another). 
Selection – choosing between 
two or more alternative paths 
(if, if/else, switch). 
Repetition – used for looping 
(for, while, do/while) i.e. 
repeating a block of code 
multiple times in a row. 

When using these conditions, we use logical operators to check whether an expression is true 
or false.  Logical operators are arithmetic comparison operators much like the symbols we use 
in mathematics.  Each of the following operators returns either true or false (1 or 0) and are 
used as test expressions in selection statements and or repetition (loop) statements. 
  x == y    // x is equal to y 
  x != y    // x is not equal to y 
  x < y     // x is less than y 
  x <= y    // x is less than or equal to y 
  x > y     // x is greater than y 
  x >= y    // x is greater than or equal to y 

Booleans work the same way, returning a value of either true or false. 
  x && y    // the AND operator -- true if both x and y are true 
  x || y    // the OR operator -- true if either x or y (or both) are true 
!x // the NOT operator (negation) -- true if x is false 

Conditionals and Expressions 



 16 

In human terms, saying “x and y” 
is like coding: “x && y” 
 
Some examples of these expressions are: 
  (x > 0 && y > 0 && z > 0)  // all three of (x, y, z) are positive 
  (x < 0 || y < 0 || z < 0)  // at least one of the three variables is 
negative 
 
      // there are at least 20 students and the class average is at least 70 
  (numStudents >= 20 && !(classAvg < 70)) 
 
      // means the same thing as the previous expression   
  (numStudents >= 20 && classAvg >= 70) 

The && and || operators also have a feature known as short-circuit evaluation.  In the 
Boolean AND expression (X && Y), if X is false, there is no need to evaluate Y (so the 
evaluation stops).  

Example: 
(d != 0 &&  n / d > 0) 

 

notice that the short circuit is crucial in this one.  If d is 0, then evaluating (n / d)  would result in 
division by 0 (illegal).  The "short-circuit" prevents it in this case.  If d is 0, the first operand (d != 
0) is false.  So the whole && is false. 
 
Similarly, for the Boolean OR operation (X || Y), if the first part is true, the whole thing is 
true, so there is no need to continue the evaluation.  The computer only evaluates as much of 
the expression as it needs.  This can allow the programmer to write faster-executing code.   
 
Technically, the C++ operators:  !, &&, and || are not required to have logical expressions as 
operands.  Their operands can be of any simple data type, even floating-point types. 
 
The if/else selection statement is the most common selection statement in programming.  The 
basic syntax would be: 
 
if (expression) 
      statement 
   else 
      statement 

The else clause is optional, so this format is also valid: 
 
if (expression) 
      statement 

 
The expression part can be any expression that evaluates a value (an R-value), and it must be 
enclosed in parentheses ( ).  The best use is to make the expression a Boolean expression, 
which is an operation that always returns a value of true or false. 
 



 17 

For other expressions (like (x + y), for instance): 
• an expression that evaluates to 0 is considered false 
• an expression that evaluates to anything else (non-zero) is considered true 

 
Example: 
if (grade >= 68) 
      cout << "Passing"; 
 
 
if (x == 0) 
       cout << "Nothing here"; 
   else 
       cout << "There is a value"; 

 
This example sums the numbers starting with 1, through whatever stopping value of the user’s 
choice using a count-controlled while loop and then printing out the total: 
 
int main() 
{ 
      int choice; 
      int numCount;  
 int total; 
 cout << "How many numbers do you want to print out "; 
 cin >> choice; 
 total = 0; 
 numCount = 1;    
 while (numCount <= choice)   
 { 
  total = total + numCount; 
  numCount++; 

} 
 cout << total << endl;  
 
     return 0; 
}   
 
Similar to this approach, we can also use a for loop to count and specify starting and ending 
points for printing out all of the numbers in between the user-specified values: 
 
int main()  
{ 
      int startNum, endNum; 
      cout << “Enter the starting number: ” << endl; 
      cin >> startNum; 
      cout << “Enter the last number: “ << endl;  
      cin >> lastNum; 
      for (int start = startNum; start <= lastNum; start++) 
      { 
             cout << start << “, “; 
      } 
      return 0; 
} 



 18 

Through several code examples, we’ve seen how to assign and store values of different data 
types with variables.  Arrays are used to store multiple values within a single variable, instead of 
declaring multiple variables for each value.  For example, this means that five values of type int 
can be declared as an array without having to declare 5 different variables (each with its own 
identifier).  Instead, using an array, the five int values are stored in contiguous memory 
locations, and all five can be accessed using the same identifier, with the proper index. 
 
To declare an array, you define the variable type, specify the name of the array, followed by 
square brackets and specify the number of values within the brackets. The declaration would 
be dataType arrayName[arraySize]; 
 
Example: 
int val[5]; 

• int – Type of element to be stored (datatype) 
• val – Name of the array (arrayName) 
• 5 – Size of the array (arraySize) 

This example allows me to have 5 containers for storing values in an array.  As we remember 
from storing values inside of variables, I can store however many values that I wish in each of 
the 5 containers. 

 
 
 
 
In the above example, each blank panel represents an element of the array.  In this case, these 
are integer data types.  These elements are numbered from 0 to 4, with 0 being the first and 4 
being the last.  In C++, the first element in an array is always numbered with a zero, no matter 
its length.  Therefore, the size of our array is a total count of 5. 
 
Let’s look at an example of a sequential search in a sorted list of an array. 
 
      

 
 
 
 
 
 
 
In this example of a sorted list, the user can enter a sequence 
of numbers (values) into an array, and then the index starts at 
zero and searches through the array returning true until it hits 
8, then drops out of the loop. 
 
 

Arrays 

void SearchOrd(int list[ ], int item, int length, int& index, bool& found) 
{ 
      index = 0; 
      list[length] = item; 
      while (item > list[index]) 
      { 
           index ++; 
      } 
      found = (index < length && item == list[index]); 
} 

 



 19 

You just saw from my previous example how we can run a sequential search inside of an array, 
but how about inserting and deleting in an ordered list?  We can do both of those! 
To insert: 
 
void Insert(int list[ ], int& length, int item) 
{ 

bool placeFound; 
      int index; 
      int count; 
      SearchOrd(list, item, length, index, placeFound); 
      for (count = length – 1; count >= index; count--) 
      { 
           list[count + 1] = list[count]; 
      } 
      list[index] = item; 
      length++; 
} 

 
and to delete: 
 
for (count = index; count <length-1; count++;) 
{ 
      list[count] = list[count + 1]; 
} 
length--; 

 
Now, suppose we want to perform a selection sort in an array.  We need to properly plan for 
this process, and to do so we create an algorithm.  I will cover this process shortly after going 
over more about the concepts of algorithms. 
 
 
Continuing on with the theoretical side of computing, algorithms are a sequence of instructions 
that are applied to problem-solving operations.  They can either be straightforward or very 
complex it simply depends on what you’re trying to build.   

 
 
 
 
 
 

Speaking of instructions and building, applying algorithms is a lot like building a small piece of 
furniture with a list of instructions.  When you purchase a small table or bookshelf from IKEA, it 
usually comes complete (most of the time) in the box with instructions.  As we remove the parts 
and the instructions, we account for everything we know that we need to complete the build.  
Next, we consider how we have to put everything together.  Do we have the proper tools, and 
knowledge of how to use said tools?  If so, we can move forward to the instructions.  Reading 
through the instructions is no different than what you are creating for your own computer 
program.  You have a desired outcome for a functional piece, you ensure that you have a 

What are Algorithms?  



 20 

sequential list of instructions (operations) in mind, and you simply build (code) by connecting 
one piece (function) at a time.  Then, the final result (output) is the completed furniture.  With 
real-world situations in mind, another way of looking at this is that you’re technically using 
algorithms every time you use your computer, a calculator, or an ATM, you’re using algorithms.  
As such, these simple, sequential processes of instructions (algorithms) help us perform tasks in 
programming.   
In order for some instructions to be classified as an algorithm, it needs to have the following 
characteristics: 

• Distinctive: Algorithms 
should be distinctive. Each 
of its steps should be clear 
in all aspects and must lead 
to only one meaning. 

• Well-Defined Input: If an 
algorithm says to take 
input, it should be well-
defined inputs.  

• Well-Defined Output: The 
algorithm must clearly 
define what output will be 
yielded and it should be well-defined as well.  

• Practical: The algorithm should remain simple and practical, such that it can be 
executed upon with available resources.  It should not contain a non-existent 
technology. 

• Finite: The algorithm must be finite, e.g. it should terminate after finite time. 
• Independent: The algorithm designed should be independent, e.g. normal instructions 

that can be implemented in any language, and yet the output will be same. 
 
The next question is, how do we design algorithms?  In order to write an algorithm, the 
following factors are required:  
  

• A clear definition of the problem that is to be solved by the algorithm. 
• The constraints of the problem that must be considered while solving the problem. 
• The input to be taken to solve the problem. 
• The output to be expected when the problem is solved. 
• The solution to the problem, within the given constraints. 

 
Methods to help formulate algorithms: 

• pseudocode - helps "think" out a problem or algorithm before trying to code it 
• flowcharting - graphical way to formulate an algorithm or a program's flow 
• stepwise refinement (top-down design) of algorithms 

 
 



21 

At this point, I’ve covered several important concepts regarding algorithms and the creation of 
lists to help us get through the process.  Now we look at how to create an algorithm to perform 
a selection sort in an array.  

0) Point to the first location
1) Make a pass through the list, from the current location, looking for the smallest number
2) Exchange the smallest with the current location being pointed to
3) Move the current location point to the next location
4) Repeat 1 – 3 until the next to the last location is reached.

void SelSort(int list[ ], int length) 
{ 

int temp; 
int passCount; 
int placeCount; 
int minIndex; 

for (passCount = 0; passCount < length – 1; passCount++) 
{ 

if (list[placeCount] < list [minIndex]) minIndex = placeCount; 
} 
temp = list[minIndex]; 
list[minIndex] = list[passCount]; 
list[passCount] = temp; 

} 

The if statement of this algorithm goes through the array and finds the smallest number.  
Underneath the for loop we move the smallest value to the top element swapping the location 
with the existing value placing the smallest value to the top of the array. 

Now that we have our algorithm in place, let’s look at an example of how we’ll implement it. 



 22 

#include <iostream> 
#include <iomanip> 
 
using namespace std; 
 
void SelSort(int list[ ], int length); 
 
void main() 
{ 
 char junk; 
 int i; 
  const int length = 9; 
 int list[length] = {178, 3, 876, 32, 11, 765, 12, 77, 1}; 

 
 SelSort(length); 
  

 for (i = 0; i < 9; i++) 
  cout << list [i] << endl; 
 
 cin >> junk; 
} 
 
void SelSort(int list[ ], int length) 
{ 
 int temp; 
 int passCount; 
 int placeCount; 
 int minIndex; 
 
 for (passCount = 0; passCount < length – 1; passCount++) 
 { 
     minIndex = passCount; 
     for (placeCount = passCount + 1; placeCount < length; placeCount++) 
     { 
      if (list[placeCount] < list[minIndex]) minIndex = placeCount; 
     } 
     temp = list[minIndex]; 
     list[minIndex] = list[passCount]; 
     list[passCount] = temp; 
 } 
} 
 

 
 
Classes are an expanded concept of data structures.  Like data structures, they contain data 
members, but they can also contain functions as members.  Nearly everything in C++ is 
associated with classes and objects, along with its attributes and methods.  Attributes and 
methods are essentially variables and functions that belong to the class.  These are typically 
referred to as class members.  A class is a user-defined data type that we can use in our 
programs, and it will function as an object constructor, or a blue print for creating objects.   
 
 
 

Everything in this function 
goes before the for loop and 
is then put into SelSort 

Classes and Objects 



23 

To create a class, like other data types in programming you have to declare it and in this 
instance you would just use the keyword class.  Here is an example of creating a class called 
“MyClass”: 

class MyClass 
{ 
     public: 

int myNum; 
string myString; 

}; 

• We start by creating a class called MyClass, using the keyword, class.
• The public keyword is the access specifier, which specifies that members (attributes

and methods) of the class are accessible from outside the class.
• Inside of the class, we have an integer variable myNum and the string variable myString.

Note: Anytime variables are declared within a class, they are called attributes.

In C++, an object is created from a class.  Since we currently have a class called MyClass we can 
use this to create objects.  To create an object of MyClass we specify the class name, followed 
by the object name.  To access 
the class attributes of myNum and 
myString, we use the dot syntax, 
‘.’ on the object.  If you’ve 
observed code over time, you’ve 
likely seen the dot (period 
symbol) between data attributes, 
but maybe haven’t known what 
it was.  Accessing objects and 
attributes is the instance we use 
this.  Visualizing this is like 
walking through a door to access 
the other attribute.  By placing 
the ‘.’ between the attributes 
envision this as an execution to access the other attribute/object like walking through a door.  
Let’s say for example that I create an object from MyClass called myObj we would perform this 
as myObj.myNum.  I haven’t spoken much about object-oriented programming (OOP) in this 
guide, but OOP is where classes shine the brightest.  As opposed to procedural programming, 
where code with lots of functions and variables often runs the risk of being lengthy and 
redundant, OOP provides a clear structure for the storage and access management of variables 
and functions.  A single class can logically group code into domain-specific areas.  Object-
oriented programming keeps the code cleaner, and code execution is faster as a result.  The 
question is, why are classes relevant to OOP?  Object-oriented programming could not exist 
without classes, as classes are the bread and butter of OOP.  Thanks to classes and their ability 
to give you a logical way to group code and shape it around objects and data, the user or 
program can reuse the same lines of code within a C++ class to generate the necessary output.  



24 

The fact that C++ was built around OOP is one of the main reasons the programming language 
rose to prominence.  Going off of my previous examples, let’s look at a larger example of how 
we would implement objects with my attributes. 

class MyClass 
{   
   public:
    int myNum;
    string myString;  

}; 

int main() 
{ 
   MyClass myObj;   // Create an object of MyClass 

   // Access attributes and set values 
   myObj.myNum = 15;  
   myObj.myString = "Some text"; 

   // Print attribute values 
   cout << myObj.myNum << "\n"; 
   cout << myObj.myString; 
   return 0; 

} 

This example shows how we can create multiple objects of one class by creating a car class with 
some attributes: 

class Car 
{ 
     public: 

   string brand;   
   string model; 
   int year; 

}; 

int main() 
{ 
  // Create an object of Car 
  Car carObj1; 
  carObj1.brand = "Infiniti"; 
  carObj1.model = "M35"; 
  carObj1.year = 2006; 

  // Create another object of Car 
  Car carObj2; 
  carObj2.brand = "Ford"; 
  carObj2.model = "Mustang"; 
  carObj2.year = 1969; 

// Print attribute values 
cout << carObj1.brand << " " << carObj1.model << " " << carObj1.year << "\n"; 
cout << carObj2.brand << " " << carObj2.model << " " << carObj2.year << "\n"; 
  return 0; 
} 



25 

In C++, classes provide a great deal of data abstraction.  They provide sufficient public methods 
to the outside world to play with the functionality of the object and to manipulate object data, 
i.e., the state without actually knowing how the class has been implemented internally.  Data
abstraction provides two important advantages:

• Class internals are protected from inadvertent user-level errors, which might corrupt the
state of the object.

• The class implementation may evolve over time in response to changing requirements
or bug reports without requiring a change in user-level code.

By defining data members only in the private section of the class, the class author is free to 
make changes to the data.  If the implementation changes, only the class code needs to be 
examined to see what effect the change may have.  If data is public, then any function that 
directly accesses the data members of the old representation might be broken.  Here is an 
example with public and private attributes. 

#include <iostream> 
using namespace std; 

class Adder 
{ 
   public: 

// constructor 
Adder(int i = 0) { 

total = i; 
} 

// interface to outside world 
void addNum(int number) { 

total += number; 
} 

// interface to outside world 
int getTotal() { 
  return total; 
}; 

   private: 
// hidden data from outside world 
int total; 

}; 

int main() 
{ 
   Adder a; 

a.addNum(10);
a.addNum(20);
a.addNum(30);

   cout << "Total " << a.getTotal() <<endl; 
   return 0; 
} 



26 

You may have heard the joke, “To understand recursion you must first understand recursion.”  It 
goes in line with a common definition of recursion as a function that makes a call to itself.  A 
well-represented, real-world image of recursion is a set of those Matryoshka Russian nesting 
dolls that fit inside of one another. Inside 
the doll, is another smaller doll, inside of 
that is an even smaller doll, and so on.  
A recursive algorithm is a lot like these 
nesting dolls.  It reproduces itself with 
smaller and smaller examples of itself 
until a solution is found.  That is, until 
there are no more dolls.  What this 
means is that we require a function 
that makes recursive calls to itself.   
This is the definition of Recursion.   
The formula could be represented as: 

In the example of, “smaller versions of 
itself” means that the exponent is decremented each time.  With the Russian doll analogy in 
mind, the question is, when does the process stop in the virtual universe?   The short answer to 
that is, when we’ve reached the base case.  The base case is the case for which the solution can 
be stated as non-recursive.  One example is where N = 𝑋" is X is a case in which the answer is 
explicitly no longer recursive and terminates.  In this instance, we require a recursive algorithm.  
A recursive algorithm is an algorithm that expresses the solution in terms of a recursive call to 
itself and must terminate; that is, it must have a base case.  Here is an example of a recursive 
Power function with a base case and the recursive call marked.  The function is embedded in a 
program that reads in a number, an exponent, and then prints the result. 

#include <iostream>  
using namespace std; 

int Power( int, int ); 

int main() 
{ 

int number; 
int exponent; 

cin >> number >> exponent; 
cout << Power(number, exponent); 
return 0; 

} 

int Power( /* in */ int x, 
/* in */ int n ) 

What is Recursion? 

The number that is being 
raised to power, and the 
exponent is the power of the 
number being raised. 

Non-recursive call 

The number that is being raised to 
power, and the power that the 
number is being raised to. 



 27 

Note: 

 
{ 
 if (n == 1) 
  return x; 
 else 
  return x * Power(x, n – 1);  

 
Each recursive call to Power can be thought of as creating a completely new copy of the 
function, each with its own copies of the parameters x and n.  The value of x remains the same 
for each version of Power, but the value of n decreases by 1 for each call until it becomes 1 and 
terminates.   
 
Let’s look at another example with calculating a factorial using recursive algorithms with simple 
variables.  A factorial of a number N (written N!) is N multiplied by N – 1, N – 2,  N – 3, and 
so on.  Another way of expressing factorial is  N! = N * (N – 1)! 
 
This expression looks like a recursive definition. (N – 1)! is a smaller instance of N! – that is, it 
takes one less multiplication to calculate (N – 1)! than it does to calculate N! If we can find a 
base case, we can write a recursive algorithm.  Fortunately, we don’t have to look too far since 
0! is defined in mathematics to be 1.  Let’s look at how an algorithm would be created, and 
then how the code would be implemented for this example. 
 
Algorithm:   
IF n is 0 
 Return 1 
ELSE 
 Return n * Factorial (n – 1) 
 
Coded: 
int Factorial ( /* in */ int n ) 
{ 
 if (n == 0) 
  return 1; 
 else 
  return n * Factorial(n – 1); 
} 

 
With these examples in mind, the question is, why use recursion?  The short answer is, 
recursion can simplify more complex procedures by tracing the execution of the values from 
variables.  By using recursion we can make programs shorter by writing less code, making our 

What we consider about this next section is computing X to the n power by multiplying x times 
the result of computing x to the n – 1 power.  The precondition is x is assigned && n > 0, and 
the function value == x raised to the power of n. 

Base case 

Recursive call 



 28 

programs syntactically easier to read and will run much faster as a result.  While recursion is 
one of the more advanced and difficult areas to grasp in programming, it doesn’t have to be.  
Just as continual practice in programming helps us to become more familiar with conditionals 
and routines, through recursive practice in multiple problem scenarios recursion begins to come 
into light.  These were also extremely lightweight examples, and recursion is often used to solve 
much larger problems such as sorting large arrays and calculating the Towers of Hanoi.  
 

As the user (developer) we put in multiple requests (coding) to the computer (compiler) and if it 
passes the processing phase without any errors, the computer returns a successfully completed 
result (functional application).   

 
 
 
 
 
 
 
 
 
 
Undefined Reference 
Definition: 
An “Undefined Reference” is a predefined error that occurs when we have a reference to an 
object name (class, function, variable, etc.) in our program and the linker cannot find its 
definition when it tries to search for it in all the linked objects’ files and libraries. 
 
Thus, when the linker cannot find the definition of a linked object, it issues an “undefined 
reference” error. As clear from the definition, this error occurs in the later stages of the linking 
process. There are various reasons that cause an “undefined reference” error. 

The Developer & The Compiler 

One drawback about programming is that sometimes it feels much more convoluted than it needs to 
be, and in my experience, the compiler sometimes seems even more cryptic than the code.  As the 
developer, you will inevitably have moments of discontentment when the compiler literally gives you 
an abstract error message that prevents your code from running.  Everyone who has dabbled in code 
even a little knows that programming follows Murphy’s Law: “Whatever can go wrong, will go 
wrong.”  However, as a detailed problem-solver it is your job to locate these errors and fix them so 
that the compiler runs to completion and outputs your program.  There are many different types of 
error messages depending on the languages that you’re programming with.  Let’s take a look at a few 
common C++ errors that you’ll likely come in contact with, what the definitions of those errors look 
like, specific examples of the errors, the meanings to those errors, and plausible fixes for them. 
 



 29 

Example: 
/tmp/cj142kRq.o: In function `main': 
/tmp/cj142kRq.o(.text+0x27): undefined reference to `Print(int)' 
collect2: ld returned 1 exit status 

Meaning: 
Your code called the function Print, but the linker could not find the code for it in any .o file. 
Plausible Fixes: 

1. You forgot to link the .o file that contains the function. 
2. You misspelled the name of the function. 
3. You spelled the name of the function correctly, but the parameter list is different in 

some way. 
 

Undeclared Identifier 
Definition: 
An Undeclared identifier error is thrown by the compiler to indicate that it can’t find a 
declaration for some identifier. 
Example: 
cal.cpp: In function `int main()’: 
cal.cpp:17: `CalendarYear’ undeclared (first use this function) 
cal.cpp:17: (Each undeclared identifier is reported only once for each 
function it appears in.) 
cal.cpp:17: parse error before `;’ token 

Meaning: 
The compiler has not seen a definition for “CalendarYear” so it doesn’t know what it is. 
Plausible Fixes: 

1. Ensure that you’ve declared the variable before the function with its proper data type. 
2. Include the header file that defines the class/struct/function/etc. 
3. You misspelled the name of the identifier and need to confirm the spelling. 

 
Non-aggregate type 
Definition: 
Classes and structs are generically called "aggregate" types. If you get an error indicating that 
your class is a "non-aggregate type", then the compiler has not seen your class definition and 
doesn't recognize your class as such. 
Example: 
drawShape.cpp: In function `int main(int, char**)': 
drawShape.cpp:62: request for member `drawShape' in `theRect1()', which is of 
non-aggregate type `Rectangle ()()' 

Meaning: 
It's declaring a function called theRect1 returning an object of type Rectangle.  
Plausible Fixes: 

1. Removing the parens will nullify the function call eliminating the request to return an 
object. 

2. Dereference the parameters as pointers, then use the attribute operator ‘.’ or use the  
‘->’ notation.  



30 

I hope this guide has been a helpful guide into learning about programming, how it works, and 
how to see it.  As I mentioned in the introduction of this guide, I have not covered anywhere 
close to the vast depths of what is to be learned in the field of computer science.  However, I 
firmly believe the topics that I have covered is enough to help provide a helpful and visual 
perspective into understanding how to program.  From here, it’s up to you if you want to 
continue the journey.  As I also mentioned in my introduction, programming is hard, and while 
more experience and small projects will help you to become a better programmer, the deeper 
you go, the more complex it becomes.  This is important to realize early on.  I’ve witnessed 
several programmers that can perform essential programming with quality results, but those 
same people eventually find themselves becoming overwhelmed on larger projects, myself 
included.  I know first-hand what it’s like to spend all night sitting at the console and trying to 
solve problems in programs.  Eventually it does happen, but that’s okay!  Any last advice that I 
can think to provide is, make mistakes, get ALL of the errors, and learn from them, and learn 
how to debug them.  You can’t learn from your mistakes without making them.  Learning about 
debugging is important, and you’ll most likely be doing a lot of it if you jump deeper into 
programming.  Take your time, take breaks away from the computer, and be patient.  Start with 
the basics that I demonstrated in this guide, or go even lighter weight!  Before I learned C++, I 
taught myself HTML.  Coding with basic markup doesn’t even involve programming, it’s just text 
placement inside of containers, becoming familiar with data types, and structuring said data 
types.  Even simple markup concepts can help you in the beginning when trying to understand 
how to manipulate text and other data using tags, and separating data types.   

Unless otherwise specified in the images, all diagrams, code examples, and other images in this 
guide I created and converted digitally from my original notes and source code.  If you have any 
questions about this guide or any other general inquiries, you can email me at 
technologicguy@gmail.com   
Resources Used: 

• Dale, Nell – Weems, Chip. Programming and Problem Solving With C++ (4th Edition) –
2004

• Cplusplus.com

Conclusion 

https://www.cplusplus.com



